THE SUPER CRUDE PLANT PERFORMANCE WAS INDEPENDENTLY VERIFIED BY CONOCO CANADA LTD, WHO USED CORE LABORATORIES, ONE OF THE LARGEST SERVICE PROVIDERS OF CORE AND FLUID ANALYSIS IN THE PETROLEUM INDUSTRY.

Results Certified by:

1. Core Labs

NCUT National Center for Upgrading Technology (Canada Alberta Research Alliance)
Conoco

°API Increase	16.3 (*)
% HDS	95
% HDN	48
CCR Conversion, %	80
C7 Asphaltenes Conversion, %	90
975°F+ (524°C+) Conversion, %	81

GHU Process Upgrading

Executive summary

Genoil Inc. has designed, built and operated a 10 bbl/D upgrader plant, used to convert heavy oil into a full body crude. The plant was installed and operated at the CONOCO battery site in Kerrobert where it was in operation to upgrade bitumen with an API range from 6.9 to 8.5.

Background

The general purpose of this upgrading plant was to convert heavy crude / bitumen into a lighter crude so that it can be transportable by pipeline without the aid of diluent, and to make it more compatible for processing in existing refineries. By increasing the yield of light products and decreasing the residual portion of a heavy crude stream, heavy crude or bitumen becomes more compatible with conventional oil as typically treated existing refineries.

Lab Results

Conoco collected samples on the feed, product and gas streams and had them analyzed by CORE Laboratories in Calgary, Alberta. The following are the main results extracted from the lab report:

	Feed (bitumen)	Product (Genoil upgraded)
API	8.5	24.8
Sulfur (wt %)	5.14	0.236
Total Nitrogen (wt %)	0.286	0.1432
Acid Number	3.05	0.11
Carbon Content	83.25	86.68
Hydrogen Content	10.59	11.88
Oxygen Content	0.78	1.07
Pentane Insoluble Asphaltene	17.3	1.6
Heptane Insoluble Asphaltene	12.6	1.2
Distillation	% yield (volume)	% yield (volume)
IBP-171 C	0	8.67
IBP-232 C	1.96	11.49
232-343 C	12.44	33.02
343-524 C	32.27	36.71
524 C plus	53.25	10.08
Loss	0.08	0.03

Of major interest is the conversion of the 524 plus fraction by over 80% at the mild conditions of 745 F and 1600 psig. In addition, the reduction in the acid number from 3.05 to 0.11, that is a 96% conversion. The sulfur and nitrogen reductions were expected due to previous testing on heavy crudes, but nevertheless again were significant.

BITUMEN ANALYSIS

LABORATORY TEST RESULTS BY CORE LABORATORIES

Feedstock Analysis

JACOS BITUMEN

	LABO	RATORY TES	ST RESULTS			
JOE NUMBER 52137-01-5412	GUSTOMER	Conoco Canada	14 Kd	ATTN BOD HU	igins-Chan	
CLIENT I.D Bitumen S DATE SAMPLEDAugust 23, SAMPLE INFO	Sample 2001 Tank rude			LABORATORY I.U DATE RECEIVED TIME RECEIVED. REMARKS	0: 52137-0 : 01-08-/ :	01-5412-1 29
TESTDESCRIPTICN	PIGA RESULT	LIMITS/DEUTION	UNITS OF MEASURE	AL-STANDINOC	DATE	
Density @ 15°C Relative Density @ 15/15°C Specific Gravity @ 60°F	1009.9 1.0108 1.0106	0.1	kg/m3	ASTM D-5002 ASTM D-5002 ASTM D-5002	01/09/21 01/09/21 01/09/21	WC WC WC
API @ 15.6°C	8.5			ASTM D-5002	01/09/21	wc
Sulphur, Total by X-ray Fluorescence	5.140	500	ррт	ASTM D-4294	01/10/03	тк
Mercaptan Sulphur	150	1	mg/kg	ASTM D-3227	01/09/21	JE
Total Nitrogen by Chemiluminescence	2680	1	ppm Wt.	ASTM D-4629	01/10/12	wc
Acid Number	3.05		mg KOH/g	ASTM D-664	01/09/21	JE
Ash Content	0.036		Wt. %	ASTM D-482	01/09/24	JE
Carbon Residue, Conradson	12.75		WL %	ASTM D-189	01/09/20	JE
Base Sediment Water Total BS & W	0.05 0.05 0.10	0.05 0.05 0.05	LV % LV % LV %	ASTM D-4007 ASTM D-4007 ASTM D-4007	01/09/20 01/09/20 01/09/20	JE JE
Elemental C, H. O Carbon Content Hydrogen Content Oxygen Content	83.25 10.59 0.78		Wt % Wt % Wt %	ASTM D-5291	5.10020	UL I
Salt Content	5.5		ю/кьы	ASTM D-3230	01/09/20	JE
Pour Point	24	- 60	°C	ASTM D-97	01/09/21	JE
Pentane Insoluble Asphaltene Heptane Insoluble Asphaltene	17.3 12.6	0.1 0.1	Wt % Wt %	IP-143M IP-143	01/09/20 01/09/20	ЕН ЕН
			. C 24	ORE LABORATORIES 310 - 12th STREET N.E. ALGARY, ALBERTA T20		

PAGE: 1

	LABO	RATORY TES 11/13/01	T RESULTS		<u> </u>	
JOB NUMBER: 52137-01-5412	CUSTOMER	Conoco Ganada	Ltd.	ATTN: Bob Hug	pins-Chan	
CLIENT I.DBitumen S DATE SAMPLEDAugust 23, 1 SAMPLE INFOFeed Stock T SAMPLE DESCRIPTION: Whole Ci	Sample 2001 Fank rude		LABORATORY I.D. DATE RECEIVED TIME RECEIVED REMARKS	: 52137-01 : 01-08-29 :	-5412-1 }	
TEST DESCRIPTION	FINAL RESULT	LIMITS/DEUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECH
Fractional Distillation	% Yield (Mass)	% Yield (Volume)		ASTM D-2892	01/09/12	wc
IBP = 171 (Deg C @ 760 mmHg) IBP - 232 (Deg C @ 760 mmHg) 232 - 343 (Deg C @ 760 mmHg) 343 - 454 (Deg C @ 760 mmHg) 4540 - 524 (Deg C @ 760 mmHg) 524 Plus (Deg C @ 760 mmHg) Loss	1.67 11.18 21.58 9.70 55.80 0.07	1.96 12.44 22.41 9.86 53.25 0.08				
Vacuum Distillation			°C AET	ASTM D-1160	01/10/11	wc
I.B.P. 5% Off 10% Off 20% Off 30% Off 40% Off FBP	214.8 293.7 331.5 381.2 444.0 503.8 513.5 513.5					
Wt. % Recovery Wt. % Residue Wt. % Loss Wt. % Cold Trap (Overheads)	44.3 54.6 0.1 1.0					
i		L .	, 2	ORE LABORATORIES 810 - 12th STREET N.E.	l	
<u> </u>			C	ALGARY, ALBERTA T2	E 7P7	

LABORATORY TEST RESULTS 11/13/01									
JOB NUMBER: 52137-01-5412	CUSTOMER:	Conoco Canada	Ltd	ATTN: Bob Hugg	rins-Chan				
CLIENT I.D: Bitumen Sample LABORATORY I.D: 52137-01-541 DATE SAMPLED: August 23, 2001 DATE RECEIVED: 01-08-29 SAMPLE INFO: Feed Stock Tank TIME RECEIVED: SAMPLE DESCRIPTION: Whole Crude REMARKS:									
TERT DESCRIPTION	FINAL REGULT	LIMITS/ DELITION	UNITS OF MEASURE	TEST METHOD	DATE	teca			
Metals by ICAP Nickel Vanadium Cobalt Molybdenum Sodium Iron Potassium Calcium Magnesium Aluminum Copper Arsenic	77 196 < 0.1 9 6 7 1.3 17 0.7 15 0.5 < 0.1		mg/kg	ASTM D-5185	01/10/19	TW			
Shell Hot Filtration	0.04		Wt %		01/10/05	*NCUT			
Sheil p-Value	3.50				01/10/05	*NCUT			
Viscosity, Kinematic @ 60 ° C Viscosity, Kinematic @ 100 ° C Viscosity, Kinematic @ 140 ° C	2399 193.1 46.86		cSt cSt cSt	ASTM D-445 ASTM D-445 ASTM D-445	01/10/07 01/10/07 01/10/07	JE JE JE			
*NCUT - analysis conducted by National Center	er for Upgrading Tech	malagy		CORE LABORATORIES	-				
				CALGARY, ALBERTA T	2E 7P7				

LABORATORY TEST RESULTS 11/13/01										
JOB NUMBER: 52137-01-5412	CUSTOMER	Conoco Canada	Ltd.	ATTN: Bob Hug	gins-Chan					
CLIENT I.D:Bitumen SampleLABORATORY I.D: 52137-01-5412-1DATE SAMPLED:August 23, 2001DATE RECEIVED: 01-08-29SAMPLE INFO:Feed Stock TankTIME RECEIVED:SAMPLE DESCRIPTION:IBP - 232 °CREMARKS										
TERT DESCRIPTION	FINAL RESULT	LIMITS/DELITION	UNITS OF MEASURE	TEST METHOD	DATE	TECH				
Yield Yield API Gravity Specific Gravity Relative Density Sulphur, Total by X-ray Fluorescence	1.96 1.67 33.4 0.8582 0.8585 1.200	0.05	LV % WT % @ 60°F @ 60/60 °F @ 15/15 °C WI %	ASTM D-2892 ASTM D-2892 ASTM D-5002 ASTM D-5002 ASTM D-5002 ASTM D-4294	01/09/12 01/09/12 01/09/21 01/09/21 01/09/21	WC WC WC WC				
Mercaptan Sulphur	147	1	mg/kg	ASTM D-3227	01/09/21	JE				
Total Nitrogen by Chemiluminescence	51	1	ppm Wt.	ASTM D-4629	01/10/12	wc				
Acid Number	0.25		mg KOH/g	ASTM D-664	01/10/04	тк				
Bromine Number	5.6		g / 100 g	ASTM D-1159	01/10/04	*HP				
Aniline Point	50.3		°C	ASTM D-611	01/10/04	тк				
Elemental C, H. Carbon Content Hydrogen Content	84.93 12.26		Wt % Wt %	ASTM D-5291	01/10/17	РМ				
Hydrocarbon Type Aromatics Olefins Saturates	10.2 3.8 86.0		LV % LV % LV %	ASTM D-1319	01/10/04	JE				
Smoke Point	19.5	ľ	mm	ASTM D-1322	01/10/10	JE				
đ				CORE LABORATORIES						
			4	CALGARY, ALBERTA T2	E 7P7					

LABORATORY TEST RESULTS										
JOB NUMBER: 52137-07-5412	CUSTOMER	Conoco Canada	Ltd	ATTN: Bob Hug	nns-Chan					
CLIENT I.D: Bitumen Sample LABORATORY I.D: 52137-01-5412-1 DATE SAMPLED:August 23, 2001 DATE RECEIVED: 01-08-29 SAMPLE INFO: Feed Stock Tank TIME RECEIVED: SAMPLE DESCRIPTION: IBP - 232 °C REMARKS:										
FEST DESCRIPTION	FINAL RESULT	LIMITS/ CREVITION	UNITS OF MEASURE	TEST METHOD	DATE	TECH				
Cloud Point	<- 60	-60	°C	ASTM D-2500	01/10/06	тк				
Freeze Point	solid @ -75 C no crystals	-75	۳C	ASTM D-2386	01/10/10	JE				
Viscosity, Kinematic @ 40 ° C Viscosity, Kinematic @ 80 ° C	1.662 0.9773		cSt cSt	ASTM D-445 ASTM D-445	01/09/21 01/09/21	JE JE				
		١								
	-									
· · · · · · · · · · · · · · · · · · ·		_ <u></u>		ORE LABORATORIES						
			2	810 - 12th STREET N.E.	= 707					
		DAOGO		ALDERIA 12	- (

DATE SAMPLED: Bitumen Sa DATE SAMPLED:August 23, 20 SAMPLE INFO: Feed Stock Ta SAMPLE DESCRIPTION: 232 °C - 34	mple 001 nk ŧ3 °C			LABORATORY I.D DATE RECEIVED TIME RECEIVED REMARKS	: 52137-01 : 01-08-29 :	-5412-1
TEST DESCRIPTION	FINAL RESULT	LIMITS/TOPLUTION	UNITS OF MEASURE	TESTMETHOD	DATE	TECH.
Yield Yield API Gravity Specific Gravity Relative Density	12.44 11.18 24.7 0.9061 0.9064		LV % WT % @ 60°F @ 60/60 °F @ 15/15 °C	ASTM D-2892 ASTM D-2892 ASTM D-5002 ASTM D-5002 ASTM D-5002	01/09/12 01/09/12 01/09/21 01/09/21 01/09/21	WC WC WC WC
Sulphur, Total by X-ray Fluorescence	1.946	500	ppm	ASTM D-4294	01/10/03	тк
Mercaptan Sulphur	69	1	mg/kg	ASTM D-3227	01/09/21	JE
Total Nitrogen by Chemiluminescence	172	1	ppm Wt.	ASTM D-4629	01/10/12	wc
Acid Number	1.59	1	mg KOH/g	ASTM D-664	01/10/04	JE
Bromine Number	3.0		g / 100 g	ASTM D-1159	01/10/08	⁺HP
Aniline Point	48.0		°C	ASTM D-611	01/10/04	тк
Elemental C, H. Carbon Content Hydrogen Content	86.24 13.53		Wt % Wt %	ASTM D-5291	01/10/17	РМ
Hydrocarbon Type Aromatics Olefins Saturates	30.7 7.9 61.4		LV % LV % LV %	ASTM D-1319	01/10/04	JE
Smoke Point	13.0		mm	ASTM D-1322	01/10/10	JE
1	< - 60	- 60	°c	ASTM D-97	01/10/04	тк
Pour Point	1	1	1	1	1	I

1

	LABORATORY TEST RESULTS 11/13/01										
JOB NUMBER: 52137-01-5412	CUSTOMER:	Conoco Canada I	tđ.	ATTN: Bob Hugg	ins-Chan						
CLIENT I.DBitumen Sa DATE SAMPLEDAugust 23, 2 SAMPLE INFOFeed Stock Ta SAMPLE DESCRIPTION: 232 °C - 3	ample 2001 ank 43 °C			LABORATORY I.D DATE RECEIVED TIME RECEIVED REMARKS	: 52137-01 : 01-08-29 :	-5412-1					
TEST DESCRIPTION	FINA RESULT	LIMITSTOLUTION	UNITS OF MEASURE	TESTMETHOD	CATE	TECH					
Cloud Point	<- 60	-60	۳C	ASTM D-2500	01/10/04	тк					
Freeze Point	solid @ -62 C no crystals	-75	°C	ASTM D-2386	01/10/17	JE					
Viscosity, Kinematic @ 40 ° C Viscosity, Kinematic @ 80 ° C	5.638 2.307		cSt cSt	ASTM D-445 ASTM D-445	01/09/21 01/09/21	JE JE					
:											
		-									
ł											
~:											
	<u>I</u>	" <u>j.,</u>	· · · · · · · · · · · · · · · · · · ·	CORE LABORATORIE 2810 - 12th STREET N CALGARY, ALBERTA	S .E. T2E 7P7						
					<u></u>						

PAGE: 8

JOB NUMBER: 52137-01-5412	CUSTOMER:	Conoco Canada	Ltd:	ATTN: Bob Hugg	iris-Chan	
			***************************************	*********	*********************	
CLIENT I.D Bitumen Sa	ample			LABORATORY I.D.	: 52137-01	-5412 a
DATE SAMPLED	2001					9
	ank , Isa yo				•	
SAMPLE DESCRIPTION: 343 C-4	104 C			REMARNO		
TEBT DESCRIPTION	FINAL REBULT	LIMITS/*DELITION	UNITS OF MEASURE	TESTMETHOD	DATE	
N7-14	22.44		11/ %	ASTM D-2892	01/09/12	v
Yieid	22.43		WT %	ASTM D-2892	01/09/12	v
API Croviby	14.2		@ 60°F	ASTM D-5002	01/09/21	v
API Gravity Specific Gravity	0 9710		@ 60/60 °F	ASTM D-5002	01/09/21	v
Relative Density	0.9713		@ 15/15 °C	ASTM D-5002	01/09/21	٧
	2 507	500	0000	ASTM D-4294	01/10/03	
Supnur, Total by X-ray Fluorescence	3.507	500	μμιτ	701110-7201	0	
Total Nitrogen by Chemiluminescence	1510	1	ppm Wt.	ASTM D-4629	01/10/12	
Nitrogen, Basic	458		ppm Wt.	UOP-269	01/10/10	
Acid Number	3.9		mg KOH/g	ASTM D-664	01/09/21	
Bromine Number	3.5		g / 100 g	ASTM D-1159	01/10/04	ł
Elemental C, H.				ASTM D-5291	01/10/17	F
Carbon Content	84.83		Wt %		1	
Hydrogen Content	11.04		Wt %			
Pour Point	-18	- 60	ి	ASTM D-97	01/09/28	
Cetane Index	27.6			ASTM D-976	01/10/17	
Cloud Point	solid @ - 21ºC no crystals		°C	ASTM D-2500	01/10/04	
Viscosity, Kinematic @ 40 ° C	143.50		cSt	ASTM D-445	01/09/21	.
Viscosity, Kinematic @ 80 ° C	17.57		cSt	ASTM D-445	01/09/21	Ι.
Viscosity, Kinematic @ 100 ° C	8.995		cSt	ASTM D-445	01/09/21	.
				0000 LABORATOR:5	<u> </u>	
				2810 - 19th STREET N	5 F	
				CALGARY, ALBERTA 1		
			- <u></u>			• • •

OR NIMBER 52127 04-5412	CUSTOMER	11/13/01 Conoco Canada		ATTN: Bob Huad	ins-Chan	
CLIENT I.D Bitumen S	ample			LABORATORY I.D.	52137-01	-5412-1
DATE SAMPLEDAugust 23, 2	2001 Sank			DATE RECEIVED	: 01-00-29	r
	ank 154 YC			PEMARKS		
SAMPLE DEGURIP HUM 040 000	107 U					
EST DEBGRIPTION	FINAL REGULT	LIMITS/DELUTION	UNITS OF MEASURE	TESTMETHOD	DATE	TECH
Paraffins	5.3	0	LV %	ASTM D-3239	01/10/09	LWS
Naphthenes	38.8	0	LV %	ASTM D-2549	1	
Aromatics	55.9	0	LV %	ASTM D-2786		
NAPHTHENIC DISTRIBUTION					1 1	
1 Ring	9.3	0	LV %			
2 Ring	14.7	0	LV %			
3 Ring	8.2	0	LV %			
4 Ring	5.2	0	LV %			
5 Ring	1.4	0	LV %			
6 Ring	< 0.1	0	LV %			
AROMATIC DISTRIBUTION	 					
Monoaromatics	24.3	0	LV %		-	
—Alkylbenzenes	8.0	0	LV %			
Naphthenebenzenes	7.2	0	LV %			
Dinaphthenebenzenes	9.1	0	LV %			
Diaromatics	14.8	0	LV %			
Naphthalenes	4.5	0	LV %]		
Acenaphthenes/Dibenzofurans	4.6	0	LV %			
Fluorenes	5.7	0	LV %			
Triaromatics	4.5	0	LV %		1	
Phenenanthrenes	3.3	0	LV %			
Naphthenephenanthrenes	1.2	0	LV %			
Tetraaromatics	2.1	0	LV %			
Pyrenes	1.7	0	LV %			
Chyrsenes	0.4	0	LV %			
Pentaaromatics	0.2	0	LV %			
—Perylenes	0.2	0	LV %			
Dibenzanthracenes	< 0.1	0	LV %			
Thiopheno Aromatics	9.8	0	LV %			
Benzothiophenes	5.9	0	LV %			
Dibenzothiophenes	3.5	0	LV %			
Naphthabenzothiophenes	0.4	0	LV %			
Unidentified Aromatics	0.2	0	LV %			
	<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	CORE LABORATORIES	!! s	
				2810 - 12th STREET N.	Е.	
	<u></u>			CALGARY, ALBERTA 1	2E 7P7	

	LABO	RATORY TES 11/13/01	T RESULTS			
JOB NUMBER: 52137-01-5412	CUSTOMER:	Conoco Canada	Lid.	ATTN: Bob Hugg	ins-Chan	
CLIENT I.DBitumen S DATE SAMPLEDAugust 23, 2 SAMPLE INFOFeed Stock T SAMPLE DESCRIPTION: 454 °C - 5	ample 2001 ank 524 °C			LABORATORY I.D. DATE RECEIVED TIME RECEIVED REMARKS	: 52137-01 : 01-08-2 : :	1-5412-1 9
TEBT DESCRIPTION	FINAL RESULT	LIMITS/ DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	тесн
Yield Yield API Gravity Specific Gravity	9.86 9.70 11.3 0.9913		LV % WT % @ 60°F @ 60/60 °F @ 15/15 °C	ASTM D-2892 ASTM D-2892 ASTM D-5002 ASTM D-5002	01/09/12 01/09/12 01/09/21 01/09/21	wc wc wc wc
Sulphur, Total by X-ray Fluorescence	4.045	500	ppm	ASTM D-3002	01/10/03	тк
Total Nitrogen by Chemiluminescence	2620	1	ppm Wt.	ASTM D-4629	01/10/12	wc
Nitrogen, Basic	723		ppm Wt.	UOP-269	01/10/10	JE
Acid Number	4.9		mg KOH/g	ASTM D-664	01/10/03	тк
Elementat C, H. Carbon Content Hydrogen Content	84.33 11.87		Wt % Wt %	ASTM D-5291	01/10/17	РМ
Carbon Residue, Conradson	0.16		Wt. %	ASTM D-189	01/10/04	JE
Pour Point	15	- 60	ి	ASTM D-97	01/10/09	тк
Viscosity, Kinematic @ 40 ° C Viscosity, Kinematic @ 80 ° C Viscosity, Kinematic @ 100 ° C	2192 93.25 31.71		cSt cSt cSt	ASTM D-445 ASTM D-445 ASTM D-445	01/09/21 01/09/21 01/09/21	JE JE JE
				CORE LABORATORIES	=	
				CALGARY, ALBERTA T	2E 7P7	

Page: 11

	LABO	RATORY TES 11/13/01	T RESULTS	· · · · · · · · · · · · · · · · · · ·	<u> </u>	
JOB NUMBER: 52137-01-5412	CUSTOMER	Conoco Canada	Ltd	ATTN: Bob Hug	nins-Chan	
CLIENT I.D Bitumen S DATE SAMPLEDAugust 23, SAMPLE INFO Feed Stock SAMPLE DESCRIPTION: 454 °C -	LABORATORY I.D. DATE RECEIVED TIME RECEIVED REMARKS	: 52137-0 : 01-08-2 :	1-5412-1 9			
TEST DESCRIPTION	FINAL RESULT	LIMITS/DELITION	UNITS OF MEASURE	TEST METHOD	DATE	TECH
Paraffins	3.6	0	LV %	ASTM D-3239	01/10/09	IWS
Naphthenes	24.8	0	LV %	ASTM D-2549	0,,10,03	
Aromatics	71.6	0	LV %	ASTM D-2786		
NAPHTHENIC DISTRIBUTION						
1 Ring	6.2	0	LV %			
2 Ring	9.9	0	LV %			
—3 Ring	6.0	0	LV %			
—4 Ring	2.1	0	LV %			
—5 Ring	0.6	0	LV %			
6 Ring	< 0.1	0	LV %			
AROMATIC DISTRIBUTION	†					
Monoaromatics	34.8	0	LV %			
Alkylbenzenes	12.4	0	LV %			
Naphthenebenzenes	9.8	0	LV %		ĺ	
Dinaphthenebenzenes	12.6	0	LV %			
Diaromatics	19.0	0	LV %		· [
Naphthalenes	6.4	0	LV %			
Acenaphthenes/Dibenzofurans	5.1	0	LV %			
Fluorenes	7.5	0	LV %		j	
Triaromatics	3.3	0	LV %			
Phenenanthrenes	2.6	0	LV %			
Naphthenephenanthrenes	0.7	0	LV %			
Tetraaromatics	2.3	0	LV %			
Pyrenes	1.9	0	LV %		ľ	
	0.4	0	LV %			ĺ
Pentaaromatics	0.2	0	LV %			
Perylenes	0.2	0	LV %	[
Dibenzanthracenes	< 0.1	0	LV %			
Thiopheno Aromatics	11.1	0	LV %			
Benzothiophenes	8.7	0	LV %			
	2.2	0	LV %			Į
Naphthabenzothiophenes	0.2	0	LV %			
Unidentified Aromatics	0.9	0	LV %			
	I.	I	I	CORE LABORATORIES		
			2	810 - 12th STREET N.E.		
		···	C	CALGARY, ALBERTA T2	<u>. 7P7</u>	

	LABO	RATORY TES 11/13/01	T RESULTS					
JOB NUMBER: 52137-01-5412	CUSTOMER	Conoco Canada	ltd	ATTN: Bob Hug	dins-Chan			
CLIENT I.DBitumen Sa DATE SAMPLEDAugust 23, 2 SAMPLE INFO: Feed Stock Ta SAMPLE DESCRIPTION: 343 °C Plu	ample 001 ank us		LABORATORY I.D: 52137-01-5412-1 DATE RECEIVED: 01-08-29 TIME RECEIVED: REMARKS					
TEST DESCRIPTION	FINAL RESULT	LIMITS/ DRUTION	UNITS OF MEASURE	TESTMETHOD	CATE	TECH		
Yield Yield API Gravity Specific Gravity Relative Density	85.5 87.1 6.2 1.0279 1.0281		LV % WT % @ 60 °F @ 60/60 °F @ 15/15 °C	ASTM D-2892 ASTM D-2892 ASTM D-5002 ASTM D-5002 ASTM D-5002	01/09/12 01/09/12 01/09/21 01/09/21 01/09/21	WC WC WC WC		
Sulphur, Total by X-ray Fluorescence	5.718	500	ppm	ASTM D-4294	01/10/03	тк		
Total Nitrogen by Chemiluminescence	2960	1	ppm Wt.	ASTM D-4629	01/10/12	wc		
Acid Number	2.70		mg KOH/g	ASTM D-664	01/10/10	JE		
Elemental C, H. Carbon Content Hydrogen Content	83.29 10.20		Wt % Wt %	ASTM D-5291	01/10/17	PM		
Carbon Residue, Conradson	16.05		Wt. %	ASTM D-189	01/09/24	JE		
Pour Point	42	- 60	°C	ASTM D-97	01/10/07	тк		
Viscosity, Kinematic @ 60 ° C Viscosity, Kinematic @ 100 ° C Viscosity, Kinematic @ 140 ° C	30 230 1 436		cSt cSt cSt	ASTM D-445 ASTM D-445 ASTM D-445	01/09/21 01/09/24	je Je		
Pentane Insoluble Asphaitene Heptane Insoluble Asphaitene	20.5 14.1	0.1 0.1	Wt % Wt %	IP-143M IP-143	01/09/20 01/09/20	eh Eh		
Ash Content	0.062		Wt. %	ASTM D-482	01/09/24	JE		
				CORE LABORATORIE 2810 - 12th STREET N. CALGARY, ALBERTA 1	S .E. 12E 7P7			

Page: 13

LABORATORY TEST RESULTS 11/13/01											
JOB NUMBER: 52137-01-5412 CUSTOMER: Conoco Canada Ltd. ATTN: Bob Huggins-Chan											
CLIENT I.D Bitumen Si DATE SAMPLEDAugust 23, 2 SAMPLE INFO Feed Stock T SAMPLE DESCRIPTION: 343 °C PI		LABORATORY I.D DATE RECEIVED TIME RECEIVED REMARKS	: 52137-01 : 01-08-29 : :	-5412-1 9							
TEST DESCRIPTION	FINAL RESULT	LIMITS/ DRUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECH					
Metals by ICAP Nickel Vanadium Cobalt Molybdenum Sodium Iron Potassium Calcium Magnesium Aluminum Copper Arsenic	89 227 < 0.1 10 10 41 0.3 8 1 19 0.8 < 0.1		mg/kg	ASTM D-5185	01/10/19	TW					
				CORE LABORATORIES 2810 - 12th STREET N.E	<i>L</i> 						
				CALGARY, ALBERTA T	2E 7P7						

	CUSTOMER	Conoco Canada	Fe	ATTN: Bob Hugg	ins-Chan	
CLIENT I.D	mple 001 ank s		<u>199</u> 6222032012222222222222222222222222222222	LABORATORY I.D DATE RECEIVED TIME RECEIVED REMARKS	: 52137-01 : 01-08-29 :	-5412-1)
TEST DESCRIPTION	FINAL RESULT	UMPSZ CAUTION	UNITS OF MEASURE	TESTMETHOD	OATE	TECH
Viold	53.25		LV %	ASTM D-2892	01/09/12	wc
Vield	55.80		WT %	ASTM D-2892	01/09/12	WC
API Gravity	2.4		@ 60 °F	ASTM D-5002	01/09/21	WC
Specific Gravity	1.0570		@ 60/60 °F	ASTM D-5002	01/09/21	wc
Relative Density	1.0572		@ 15/15 °C	ASTM D-5002	01/09/21	WC
Sulphur, Total by X-ray Fluorescence	6.431	500	ppm	ASTM D-4294	01/10/03	тк
Total Nitrogen by Chemiluminescence	3770	1	ppm Wt.	ASTM D-4629	01/10/12	wc
Acid Number	2.16		mg KOH/g	ASTM D-664	01/10/10	JE
Elemental C. H. O.				ASTM D-5291	01/10/17	PM
Carbon Content	82.02		Wt %			
Hydrogen Content	9.36		Wt %			
Ovvren Content	1.34		Wt %			
Carbon Residue, Conradson	24.74		Wt. %	ASTM D-189	01/09/21	JE
Pour Point	90	- 60	° C	ASTM D-97	01/10/09	тк
Magazity Kinematic @ 100 °C	09860		cSt	ASTM D-445	01/09/24	JE
Viscosity, Kinematic @ 140 °C	4 071	j	cSt	ASTM D-445	01/10/07	тк
	4011		Poise	ASTM D-2171		ł
Viscosity @ 250 °C			Poise	ASTM D-2171		
Pentane Inscluble Asphaltene	32.3	0.1	Wt %	IP-143M	01/09/20	EH
Heptane Insoluble Asphaltene	24.0	0.1	Wt %	IP-143	01/09/20	EH
Ash Content	0.104		Wt. %	ASTM D-482	01/09/24	JE
Penetration @ 0 ° C Penetration @ 25 ° C						
	<u></u>	_I	<u> </u>	CORE LABORATORIE 2810 - 12th STREET N CALGARY ALBERTA	_1 S I.E. T2E 7P7	I

		11/13/01				
OB NUMBER: 52137-01-5412	GUSTOMER:	Conoco Canada	L KC.	ATTN: Bob Huge	uns-Chan	
CLIENT I.D: Bitur DATE SAMPLED:Augus SAMPLE INFO: Feed S SAMPLE DESCRIPTION: 524	men Sample st 23, 2001 tock Tank ∔ ℃ Plus			LABORATORY I.D. DATE RECEIVED TIME RECEIVED REMARKS	: 52137-01- : 01-08-29 :	5412-1
EST DESCRIPTION	FINA RESULT	LIMITS/DELITION	UNITS OF MEASURE	TEST METHOD	DATE	TECH
Metais by ICAP Nickel Vanadium Cobalt Molybdenum Sodium Iron Potassium Calcium Magnesium Aluminum Copper Arsenic	123 311 < 0.1 14 17 49 < 0.1 11 2 25 1 < 0.1		mg/kg	ASTM D-5185	01/10/19	τw
				CORFLABORATORISS		
				2810 - 12th STREET N.E	, I,	

GENOIL TEST RESULTS - PRODUCT ANALYSIS

LABORATORY TEST RESULTS BY CORE LABORATORIES

						1			
			1			1			1
									1
									1
	E.e.e.	-1	VCUT						1
	1. S.	Ň	ational Cent	re for Unaredir	n Tech	nology			1-
	and the second	14.4) e'	anonal och	te tor opyraum	19-1 CCL	moiogy			1
	and the second s		allada/Alberta resea						
			·			····		1	
		1							-
	ц	NC	UT ANALYTI	CAL LABORATO	DRY				
			ANALYS	SIS REPORT					
								I	
Submitter	Eric MacDonald								
	Core Laboratories Canada Ltd								1
	2810- 12th Street NE								
	Calgary, Alberta								
	T2E 7P7								
								1	1
Lab ID	Customer ID	P-Value	FR	1/X		SHFT			
<u> </u>			(Flocculation Ratios)	(Inverse of dilution Ratio)		(w1%)			
		<u> </u>		\sim	\sim				
10006785	Whole Crude 52137-01-5412-1	3.50	0.2056	0.150		0.04			
This Athab	asca Bitumen feed sample.		0.1244	0.250					
			0.0431	0.350					
· · · · · · · · · · · · · · · · · · ·					\sim			1	
10006786	Whole Crude 52137-01-5412-12	1.20	0.4400	0.200		0.42			
This is the	liquid product from the catalytic ru	ก	0.4218	0.400					
			0.4036	0.600					
10006854	52137-01-5412-12 524C PLUS	1.41	0.5780	0.251	···	0.012	· · · · · · · · · · · · · · · · · · ·		
This is the	524 C+ fraction of the liquid produ	ict above.	0.5060	0.439			·		†
		1	0,4350	0.754					+
		1						1	†
		1						-	+
	·	1						1	1
····	1	1							i
		<u> </u> ,							
			· · · · · · · · · · · · · · · · · · ·				• ••		
·····									

Test Results PRODUCT SAMPLE Calalyst Run. composite Sample. LABORATORY TEST RESULTS 11/13/01 CUSTOMER: Conoco Canada Ltd. ATTN: Bob Huggins-Chan JOB NUMBER: 52137-01-5412 CLIENT I.D.....: Crude Sample LABORATORY I.D: 52137-01-5412-12 DATE RECEIVED: 01-09-19 DATE SAMPLED: TIME RECEIVED: SAMPLE INFO 20010828 REMARKS SAMPLE DESCRIPTION ...: Whole Crude FINAL RESULT LIMITS/ DEUTION DATE TECH UNITS OF MEASURE TEST METHOD TEST DESCRIPTION 01/10/04 WC ASTM D-5002 904.7 0.1 kg/m3 Density @ 15°C 01/10/04 WC ASTM D-5002 905.5 Relative Density @ 15/15°C ASTM D-5002 01/10/04 WC 905.2 Specific Gravity @ 60°F ASTM D-5002 01/10/04 WC 24.8 API @ 15.6°C ASTM D-4294 01/10/04 TK 2360 500 ppm Sulphur, Total by X-ray Fluorescence 1432 ASTM D-4629 01/10/12 WC ppm Wt. 1 Total Nitrogen by Chemiluminescence ASTM D-664 01/10/16 JE 0.11 mg KOH/g Acid Number 01/10/16 **ASTM D-482** JE 0.001 WL. % Ash Content 01/10/16 2.59 WI. % **ASTM D-189** JE Carbon Residue, Conradson ASTM D-5291 01/10/17 PM Elemental C, H. O Wt % 86.68 Carbon Content 11.88 Wt % Hydrogen Content WI % 1.07 Oxygen Content ASTM D-3230 01/10/15 JE Salt Content 3.2 b/Kbbl WI% IP-143M 01/10/02 EH 1.6 0.1 Pentane Insoluble Asphaltene WI % IP-143 01/10/02 EH Heptane Insoluble Asphaltene 12 0.1 CORE LABORATORIES 2810 • 12h STREET N.E. CALGARY, ALBERTA T2E 7P7

PAGE: 1

LABORATORY TEST RESULTS 11/13/01										
JOB NUMBER: 52137-01-5412	CUSTOMER:	Conoco Canada	Ltd.	ATTN: Bob Hugg	ins-Chan					
CLIENT I.D: Crude Sample LABORATORY I.D: 521 DATE SAMPLED: DATE RECEIVED: 01- SAMPLE INFO: 20010828 TIME RECEIVED: 01- SAMPLE DESCRIPTION: Whole Crude REMARKS										
TEST DESCRIPTION	FINAL RESULT	LIMITS/ DELITION	UNITS OF MEASURE	TEST METHOD	DATE	TECH				
Fractional Distillation	% Yield (Mass)	% Yield (Volume)		ASTM D-2892	01/09/2 9	wc				
IBP = 48 (Deg C @ 760 mmHg) IBP - 177 (Deg C @ 760 mmHg) 177 - 232 (Deg C @ 760 mmHg) 232 - 343 (Deg C @ 760 mmHg) 343 - 524 (Deg C @ 760 mmHg) 524 Plus (Deg C @ 760 mmHg) Loss	7.44 10.59 32.23 38.00 11.68 0.06	8.67 11.49 33.02 36.71 10.08 0.03								
Atmospheric / Vacuum Distillation			°C AET	ASTM D-1160	01/10/17	wc				
I.B.P. 5% Off 10% Off 20% Off 30% Off 40% Off 50% Off 60% Off 70% Off 90% Off 94% Off FBP Wt. % Recovery Wt. % Residue Wt. %t Loss	60.2 150.6 175.8 203.5 290.0 315.1 333.8 363.5 395.5 443.8 518.1 567.8 567.8 567.8 9.3 0.9	(atmospheric) (atmospheric) (atmospheric) (atmospheric) (vacuum) (vacuum) (vacuum) (vacuum) (vacuum) (vacuum) (vacuum) (vacuum)								
				CORE LABORATORIE 2810 - 12th STREET N CALGARY, ALBERTA	S E. 12E 7P7					

	LABO	RATORY TES 11/13/01	T RESULTS						
JOB NUMBER: 52137-01-5412	CUSTOMER	Conoco Canada	Ltd.	ATTN: Bob Hugg	gins-Chan				
CLIENT I.D: Crude Sample DATE SAMPLED: SAMPLE INFO				LABORATORY I.D: 52137-01- DATE RECEIVED: 01-09-19 TIME RECEIVED: REMARKS					
TEST DESCRIPTION	FINAL RESULT	LIMITS/ DELUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECH			
Metals by ICAP Nickel Vanadium Cobalt Molybdenum Sodium Iron Potassium Calcium Magnesium Aluminum Copper Arsenic	8 18 < 0.1 < 0.05 5 1 1 1 0.1 3.0 0.5 < 0.1		mg/kg	ASTM D-5185	01/10/19	TW			
Shell Hot Filtration Shell p-Value	0.42 1.20		Wt %		01/09/19 01/09/19	*NCUT			
Viscosity, Kinematic @ 40 ° C Viscosity, Kinematic @ 80 ° C	10.04 3.71		cSt cSt	ASTM D-445 ASTM D-445	01/10/03 01/10/03	ТК ТК			
*NCLIT - analysis conducted by National Cent	er for Upgrading Tech	molory		CORE LABORATORIES					
				CALGARY, ALBERTA T	2E 7P7				

	LABO	RATORY TES 11/13/01	T RESULTS				
JOB NUMBER: 52137-01-5412	CUSTOMER:	Conoco Canada	Ltd.	ATTN: Bob Hugg	ins-Chan		
CLIENT I.D: Crude San DATE SAMPLED SAMPLE INFO: 20010828 SAMPLE DESCRIPTION: 177 °C - 2	nple 232 °C			LABORATORY I.D: 52137-01-5412-12 DATE RECEIVED: 01-09-19 TIME RECEIVED: REMARKS			
TEST DESCRIPTION	FINAL RESULT	LIMITS/DELUTION	UNITS OF MEASURE	TEST METHOD	DATE	тесн	
Yield Yield API Gravity Specific Gravity Relative Density	11.49 10.59 38.2 0.8340 0.8344		LV % WT % @ 60 °F @ 60/60 °F @ 15/15 °C	ASTM D-2892 ASTM D-2892 ASTM D-5002 ASTM D-5002 ASTM D-5002	01/09/29 01/09/29 01/10/04 01/10/04 01/10/04	wc wc wc wc wc	
Sulphur, Total by UV Fluorescence	19	1	mg/kg	ASTM D-5453	01/10/04	тк	
Total Nitrogen by Chemiluminescence	66	1	ppm Wt.	ASTM D-4629	01/10/05	wc	
Bromine Number	0.5		g / 100 g	ASTM D-1159	01/10/08	*HP	
Elemental C, H. Carbon Content Hydrogen Content	88.04 12.91		Wt % Wt %	ASTM D-5291	01/10/17	РМ	
Hydrocarbon Type Aromatics Olefins Saturates	26.8 0.8 72.4		LV % LV % LV %	ASTM D-1319	01/10/17	JE	
Aniline Point	46.0		°C	ASTM D-611	01/10/04	тк	
Smoke Point	18.0		mm	ASTM D-1322	01/10/15	JE	
Freeze Point	-69	-76	°C	ASTM D-2386	01/10/16	JE	
				CORE LABORATORIES 2810 - 12th STREET N.	-		
				CALGARY, ALBERTA T	=. 2E 7P7		

.

LABORATORY TEST RESULTS 11/13/01										
JOB NUMBER: 52137-01-5412	CUSTOMER:	Conoco Canada	Ltd	ATTN: Bob Hugg	ins-Chan					
CLIENT I.D: Crude San DATE SAMPLED: SAMPLE INFO 20010828 SAMPLE DESCRIPTION: 524 °C PI	LABORATORY I.D: 52137-01-5412-12 DATE RECEIVED: 01-09-19 TIME RECEIVED: REMARKS									
TEST DESCRIPTION	FINAL RESULT	LIMITS/ DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	тесн				
Metals by ICAP Nickel Vanadium Cobalt Molybdenum Sodium Iron Potassium Calcium Magnesium Aluminum Copper	67 147 < 0.1 < 0.05 12 4 2.3 12 2 10 1		mg/kg	ASTM D-5185	01/10/19	TW				
Arsenic Shell Hot Filtration	< 0.1 0.012		Wt %		01/10/31	*NCUT				
Shell p-Value	1.41				01/10/31	*NCUT				
				2810 - 12th STREET N.I CALGARY, ALBERTA T	, E. 2E 7P7					

Page: 11

-