

THE REPORT BELOW WAS GENERATED WITH FEEDSTOCK AND PRODUCT SAMPLES TAKEN BY CONOCO CANADA LTD, WHO USED CORE LABORATORIES, ONE OF THE LARGEST SERVICE PROVIDERS OF CORE AND FLUID ANALYSIS IN THE PETROLEUM INDUSTRY.

Results Certified by Core Labs for Conoco Canada Ltd.

GHU Process Upgrading

°API Increase	16.3 (*)
% HDS	95
% HDN	48
CCR Conversion, %	80
C7 Asphaltenes Conversion, %	90
975°F+ (524°C+) Conversion, %	81

The report below summarizes the incredible results achieved by Genoil's Hydroconversion upgrader. No other process can come close in performance or efficiency especially with regard to the Hydrodesulphurization (HDS).

Executive summary

Genoil Inc. has designed, built and operated a 10 bbl/D Upgrader Pilot Demonstration Unit (PDU), used to convert heavy oil into a full body crude. The Upgrader was commissioned in June 1999 at a Renaissance Energy battery near Jenner, Alberta. The PDU processed heavy oil having an API content ranging from 11.5 to 12.7 degrees. The PDU was moved to Kerrobert, Saskatchewan, to the CONOCO battery site were it was in operation to upgrade bitumen with an API range from 6.9 to 8.5 under both non-catalytic and catalytic conditions at various operating parameters. More recently, The PDU was moved to Two Hills, Alberta to commence testing of various oil fractions with a liquid catalyst.

Introduction

The general purpose of an upgrading facility is to convert heavy crude / bitumen into a lighter crude so that it can be transportable by pipeline without the aid of diluent, and to make it more compatible for processing in existing refineries. By increasing the yield of light products and decreasing the residual

portion of a heavy crude stream, heavy crude or bitumen becomes more compatible with conventional oil as typically treated existing refineries.

These objectives can be achieved by reducing the carbon content of the heavy crude, or by adding sufficient hydrogen to the crude to make it similar to conventional crudes. The most common technologies associated with carbon reduction are called coking, while hydrocracking is the normal hydrogen addition process. Both of these processes are very expensive, and require a high degree of related treating facilities and offsite infrastructure. They are best suited to large-scale operations, and are not as well suited for smaller operations such as might be built in a field upgrader.

There are many heavy and extra heavy crudes (10-20° API), and bitumen (8-10° API), which are very difficult feedstocks for existing refineries to process. These heavier crudes are characterized by high sulfur content and yield a high portion of residual product. The residual product is usually high in metals, high in con-carbon, and high asphaltenes. Typically, these crudes are very difficult to refine and have only limited markets. Furthermore, these crudes are so viscous that they cannot be pumped through pipelines without first being diluted, usually with a light naphtha or condensate, or shipped in a heated line. Thus, there is interest in upgrading heavy crude so that it can be utilized in existing refineries.

Heavy oils contain significant concentrations of high molecular weight molecules, consisting of asphaltenes and resins. Most heavy crudes have high concentrations of asphaltenes. The asphaltenes are concentrated in the higher boiling point fractions of a crude oil. For example, Athabasca Bitumen has an API gravity of 8.8° and over 85% of its material has a boiling point of over 680°F (360°C). Over 50% of the material in this bitumen has a boiling point over 1050°F (565°C).

Asphaltenes do not readily crack, and they also inhibit the cracking of lighter compounds. In the presence of asphaltenes, condensation reactions occur rapidly to the extreme of producing coke. To prevent the formation of coke, hydrogen is injected to limit asphaltene condensation and prevent higher conversion levels without reaching instability.

Genoil Upgrader

The Genoil Upgrader Technology is based on non-destructive, catalytic hydrogenation, and flash separation. The main features of the Genoil upgrading process are the reactor and its LHSV.

The hydrogenation reactions (or non-destructive hydrocracking) converts asphaltenes into napathenes removes nitrogen and provides desulphurization. The high partial pressure of the hydrogen slows down the development of polymerization and polycondensation of the aromatic hydrocarbon radicals, and allows the hydrogen to transfer from the heavier to the lighter components.

By controlling temperature, pressure and hydrogen addition rate; the Genoil upgrading process has much flexibility to accommodate a range of process objectives.

Genoil designed, built and has in operation a 10 BPD state-of-the-art upgrading pilot plant. The plant comes complete with a hydrogen generation plant, hydrogen compressor, electrical substation and, a PLC for automatic operation control. For on line feed and product monitoring the plant has; a gas chromatograph, a hydrogen analyzer and mass flow density meters. The cooling is provided by a glycol cooling system aided by fin fan cooling. The sour gas streams are treated and sweetened in a gas absorber tower.

The plant is manned continuously by a staff of two process operators (a control panel operator and a field operator) on 12 hour shift for a total operations staff of four process operators (day shift and night shift) per 24 hours daily coverage. The four process operators rotate every 7 days. The process operators report to the onsite engineer. There are three engineers assigned to this project, they rotate every four days and provide technical support to the operations group on 12 hour days and on call at night. Furthermore, external maintenance services are provided by local contractors on an as needed basis. **CONOCO ENGINEER'S WERE PRESENT DURING THE ENTIRE TEST AND TOOK ALL SAMPLING. SAMPLES WERE ANALYSED BY CORE LABORATORIES**

The Upgrading of Bitumen at Kerrobert

Genoil has completed the upgrading bitumen at Kerrobert. The objective was to upgrade bitumen to an API of 25 with the aid of a catalyst. The catalyst used was Criterion-DN-190, which is a nickel/molybdenum catalyst used primarily for hydrotreating. This catalyst was originally developed for first stage hydrocracking primarily for polynuclear aromatics saturation, since bitumen is highly aromatic, we decided to first try this catalyst understanding that DN-190 is not the traditional bitumen hydrocracking catalyst as employed at Syncrude (they have an LC Finer Hydrocracking process).

Lab Results

Conoco collected samples on the feed, product and gas streams and had them analyzed by CORE Laboratories in Calgary, Alberta. The following are the main results extracted from the lab report:

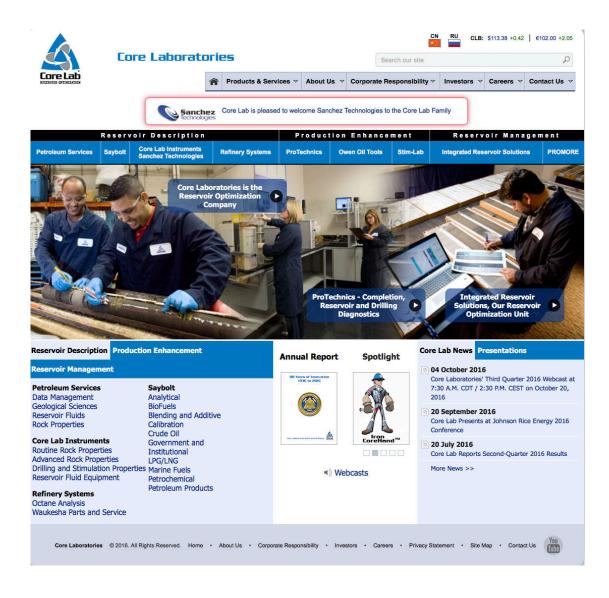
	Feed (bitumen)	Product (Genoil upgraded)
API	8.5	24.8
Sulfur (wt %)	5.14	0.236
Total Nitrogen (wt %)	0.286	0.1432
Acid Number	3.05	0.11
Carbon Content	83.25	86.68
Hydrogen Content	10.59	11.88
Oxygen Content	0.78	1.07
Pentane Insoluble Asphaltene	17.3	1.6
Heptane Insoluble Asphaltene	12.6	1.2
Distillation	% yield (volume)	% yield (volume)
IBP-171 C	0	8.67
IBP-232 C	1.96	11.49
232-343 C	12.44	33.02
343-524 C	32.27	36.71
524 C plus	53.25	10.08
Loss	0.08	0.03

Of major interest is the conversion of the 524 plus fraction by over 80% at the mild conditions of 745 F and 1600 psig. In addition the reduction in the acid number from 3.05 to 0.11. The sulfur and nitrogen reductions were expected due to previous testing on heavy crudes, but nevertheless again were significant.

Last but not least is the fact that these results were obtained with a Criterion catalyst DN-190, a catalyst that was developed primarily for hydrotreating rather than bitumen conversion. A secondary catalytic test is warranted with the use of a selective catalyst for bitumen. As is, the above results far surpass the current yields generated in the upgrading of Alberta tarsands bitumen in commercial applications.

Economics

The Genoil Upgrader has proved in its pilot plant that it can achieve a greater LHSV than current processes, in the magnitude of 25 to 100%. This allows for a substantial reduction in operating costs as well as capital costs. In essence, it means that it can debottleneck existing infrastructure by providing the option of greater capacity throughput or at the same throughput substantially improve product specifications. For new facilities, it allows for the construction of smaller vessels to meet the same demand. This represents a reduction in capital and operating costs on a BPCD basis on a magnitude of 30 to 40%.


Summary

Genoil has completed the testing Alberta tarsands bitumen at the Conoco site in Kerrobert, Saskatchewan. The results proved that the test was very successful; it outperformed existing commercial technology independent of the fact that the catalyst used is not specific for use in bitumen applications. The achieved results warrant a new test with specific catalyst for bitumen. The reduction of LHSV in the Genoil reactors are significantly greater than those in practice today, this allows for corresponding significant savings in capital and operating costs.

In next phase of testing at Two Hills, Genoil will use a licensed liquid catalyst in its reactor to upgrade Alberta tarsands bitumen.

BITUMEN ANALYSIS

LABORATORY TEST RESULTS BY CORE LABORATORIES

Feedstock Analysis

JACOS BITUMEN

JOB NUMBER: 52137-01-5412 CUSTOMER: Conceo Canada Ltd. ATTM: Bob Huggins-Chan CLIENT I.D		LABO	ORATORY TES	말 같이 다 가장을 많은 것이라. 말 같아.	<u></u>		
DATE SAMPLED	JOBINUMBER: 52137-01-5412	GUSTOMER	a fata ta	Charles and a state of the second state of the	ATTIN BOB HU	ipins-Chan	
Density @ 15°C Relative Density @ 15′1°C Specific Gravity @ 60°F 1009.9 1.0108 0.1 kg/m3 ASTM D-5002 ASTM D-5002 01/09/21 01/09/21 W// W// W// W// W// M API @ 15.6°C 8.5 - - ASTM D-5002 01/09/21 W// M Sulphur, Total by X-ray Fluorescence 5.140 500 ppm ASTM D-3227 01/09/21 W// W// Mercaptan Sulphur 150 1 mg/kg ASTM D-4229 01/10/12 W// Total Nitrogen by Chemiluminescence 2680 1 ppm W/. ASTM D-4629 01/10/12 W// Acid Number 3.05 mg KOH/g ASTM D-4629 01/10/12 W// Carbon Residue, Conradson 12.75 W/L % ASTM D-4007 01/09/20 JE Base Sediment 0.05 0.05 LV % ASTM D-4007 01/09/20 JE Water 0.10 0.05 LV % ASTM D-4007 01/09/20 JE Elemental C, H. O 63.25 W/ % W/ % ASTM D-5230 01/09/20 JE	DATE SAMPLEDAugust 23, SAMPLE INFO Feed Stock	2001 Tank			DATE RECEIVED TIME RECEIVED.	: 01-08-2 :	
Relative Density @ 16/15°C 1.0108 ATT M D-5002 01/09/21 WW API @ 15.6°C 8.5 ASTM D-5002 01/09/21 WW Sulphur, Total by X-ray Fluorescence 5.140 500 ppm ASTM D-5002 01/09/21 WW Mercaptan Sulphur 150 1 mg/kg ASTM D-4294 01/10/03 TK Total Nitrogen by Chemiltuminescence 2680 1 ppm Wt. ASTM D-4294 01/10/12 WC Acid Number 3.05 mg KOH/g ASTM D-4629 01/10/12 WC Acid Number 3.05 mg KOH/g ASTM D-4624 01/09/21 JE Ash Content 0.036 Wt. % ASTM D-4629 01/10/12 WC Carbon Residue, Conradson 12.75 WL % ASTM D-4007 01/09/20 JE Base Sediment 0.05 0.05 LV % ASTM D-4007 01/09/20 JE Water 0.05 0.05 LV % ASTM D-4007 01/09/20 JE Pour Point 6	TEST DESCRIPTION		LIMITS/DELITICX	UNITS OF MEASURI	11-STATTION		
Sulphur, Total by X-ray Fluorescence 5.140 500 ppm ASTM D-3227 01/09/21 JE Mercaptan Sulphur 150 1 mg/kg ASTM D-3227 01/09/21 JE Total Nitrogen by Chemiluminescence 2680 1 ppm Wt. ASTM D-4629 01/10/12 WC Acid Number 3.05 mg KOH/g ASTM D-664 01/09/21 JE Ash Content 0.036 Wt. % ASTM D-482 01/109/24 JE Carbon Residue, Conradson 12.75 WL % ASTM D-482 01/09/20 JE Base Sediment 0.05 0.05 LV % ASTM D-4007 01/09/20 JE Water 0.05 0.05 LV % ASTM D-4007 01/09/20 JE Elemental C, H. O 83.25 Wt % Wt % ASTM D-5291 JE Carbon Content 6.5 BASTM D-3230 01/09/20 JE Pour Point 24 -60 °C ASTM D-3230 01/09/20 JE Partane In	Relative Density @ 15/15°C	1.0108	0.1	kg/m3	ASTM D-5002	01/09/21	WC WC WC
Mercaptan Sulphur 150 1 mg/kg ASTM D-3227 01/10/03 TAK Total Nitrogen by Chemiluminescence 2680 1 ppm Wt. ASTM D-3227 01/09/21 JE Acld Number 3.05 mg KOH/g ASTM D-4629 01/10/12 WC Ash Content 0.036 Wt. % ASTM D-482 01/09/24 JE Carbon Residue, Conradson 12.75 WL % ASTM D-482 01/09/20 JE Base Sediment 0.05 0.05 LV % ASTM D-4007 01/09/20 JE Water 0.05 0.05 LV % ASTM D-4007 01/09/20 JE Elemental C, H. O 63.25 0.10 0.05 LV % ASTM D-5291 JE Salt Content 83.25 10.59 Wt % Wt % O1/09/20 JE Pour Point 24 -60 °C ASTM D-3230 01/09/20 JE Pertane Insoluble Asphaltene 17.3 0.1 Wt % JP-143M 01/09/20 E	API @ 15.6°C	8.5			ASTM D-5002	01/09/21	wc
Total Nitrogen by Chemilluminescence 2680 1 ppm Wt. ASTM D-6629 01/09/21 JE Acld Number 3.05 mg KOH/g ASTM D-664 01/09/21 JE Ash Content 0.036 Wt. % ASTM D-664 01/09/21 JE Carbon Residue, Conradson 12.75 WL % ASTM D-189 01/09/20 JE Base Sediment 0.05 0.05 LV % ASTM D-4007 01/09/20 JE Base Sediment 0.05 0.05 LV % ASTM D-4007 01/09/20 JE Water 0.05 0.05 LV % ASTM D-4007 01/09/20 JE Elemental C, H. O 6.10 0.05 UV % ASTM D-4007 01/09/20 JE Carbon Content 83.25 Wt % Wt % ASTM D-3230 01/09/20 JE Elemental C, H. O 5.5 Ib/Kbbi ASTM D-3230 01/09/20 JE Salt Content 10.59 0.78 Wt % Wt % IP-143M 01/09/20	Sulphur, Total by X-ray Fluorescence	5.140	500	ррт	ASTM D-4294	01/10/03	тк
Acid Number 3.05 mg KOH/g ASTM D-664 01/09/21 JE Ash Content 0.036 Wt. % ASTM D-482 01/09/24 JE Carbon Residue, Conradson 12.75 WL % ASTM D-482 01/09/20 JE Base Sediment 0.05 0.05 LV % ASTM D-4007 01/09/20 JE Water 0.05 0.05 LV % ASTM D-4007 01/09/20 JE Total BS & W 0.10 0.05 LV % ASTM D-4007 01/09/20 JE Elemental C, H. O Carbon Content 83.25 Wt % ASTM D-5291 JE Hydrogen Content 10.59 Wt % Wt % ASTM D-3230 01/09/20 JE Salt Content 5.5 Ib/Kbbl ASTM D-3230 01/09/20 JE Pour Point 24 -60 °C ASTM D-97 01/09/20 JE Perlane Insoluble Asphaltene 17.3 0.1 Wt % IP-143 01/09/20 EH	Mercaptan Sulphur	150	1	mg/kg	ASTM D-3227	01/09/21	JE
Ash Content 0.036 Wt. % ASTM D-482 01/09/24 JE Carbon Residue, Conradson 12.75 WL. % ASTM D-482 01/09/20 JE Base Sediment 0.05 0.05 LV % ASTM D-4007 01/09/20 JE Water 0.05 0.05 LV % ASTM D-4007 01/09/20 JE Total BS & W 0.10 0.05 LV % ASTM D-4007 01/09/20 JE Elemental C, H. O 83.25 Wt % ASTM D-4007 01/09/20 JE Carbon Content 83.25 Wt % ASTM D-4007 01/09/20 JE Hydrogen Content 0.78 Wt % ASTM D-5291 JE Salt Content 0.78 Wt % Vt % JE Pour Point 24 -60 °C ASTM D-3230 01/09/20 JE Pentane Insoluble Asphaltene 17.3 0.1 Wt % IP-143M 01/09/20 EH Hegptane Insoluble Asphaltene 12.6 0.1 Wt %	Total Nitrogen by Chemiluminescence	2680	1	ppm Wt.	ASTM D-4629	01/10/12	wc
Carbon Residue, Conradson 12.75 WL % ASTM D-169 01/09/24 JE Base Sediment 0.05 0.05 LV % ASTM D-169 01/09/20 JE Base Sediment 0.05 0.05 LV % ASTM D-4007 01/09/20 JE Water 0.05 0.05 LV % ASTM D-4007 01/09/20 JE Total BS & W 0.10 0.05 LV % ASTM D-4007 01/09/20 JE Elemental C, H. O Carbon Content 83.25 Wt % ASTM D-5291 JE Hydrogen Content 0.78 Wt % MT % JE JE Pour Point 5.5 Ib/Kbbi ASTM D-3230 01/09/20 JE Pour Point 24 -60 °C ASTM D-97 01/09/20 JE Pentane Insoluble Asphaltene 17.3 0.1 Wt % IP-143M 01/09/20 EH Heptane Insoluble Asphaltene 12.6 0.1 Wt % IP-143 01/09/20 EH	Acid Number	3.05		mg KOH/g	ASTM D-664	01/09/21	JE
Base Sediment 0.05 0.05 0.05 LV % ASTM D-4007 01/09/20 JE Water 0.05 0.05 1.V % ASTM D-4007 01/09/20 JE Total BS & W 0.10 0.05 1.V % ASTM D-4007 01/09/20 JE Elemental C, H. O 0.10 0.05 1.V % ASTM D-4007 01/09/20 JE Carbon Content 83.25 Wt % Wt % ASTM D-5291 JE Hydrogen Content 0.78 Wt % Wt % JE JE Salt Content 5.5 Ib/Kbbl ASTM D-3230 01/09/20 JE Pour Point 24 -60 °C ASTM D-97 01/09/20 JE Pentane Insoluble Asphaltene 17.3 0.1 Wt % IP-143M 01/09/20 EH Heptane Insoluble Asphaltene 12.6 0.1 Wt % IP-143 01/09/20 EH	Ash Content	0.036		Wt. %	ASTM D-482	01/09/24	JE
Water 0.05 0.05 0.05 LV % ASIM 0.4007 01/09/20 JE Total BS & W 0.10 0.05 0.05 LV % ASIM 0.4007 01/09/20 JE Elemental C, H. O 0.05 LV % ASIM 0.4007 01/09/20 JE Carbon Content 83.25 Wt % ASIM 0.4007 01/09/20 JE Hydrogen Content 10.59 Wt % ASIM 0.4007 01/09/20 JE Salt Content 5.5 Ib/Kbbl ASIM 0.4007 01/09/20 JE Pour Point 24 -60 °C ASIM 0.4007 01/09/20 JE Pentane Insoluble Asphaltene 17.3 0.1 Wt % IP-143M 01/09/20 EH Heptane Insoluble Asphaltene 12.6 0.1 Wt % IP-143 01/09/20 EH	Carbon Residue, Conradson	12.75		WL %	ASTM D-189	01/09/20	JE
Carbon Content Hydrogen Content83.25 10.59 0.78Wt % Wt %ASTM D-3291 VI %Salt Content5.5Ib/KbblASTM D-323001/09/20Salt Content5.5Ib/KbblASTM D-323001/09/20Pour Point24- 60°CASTM D-9701/09/21Pentane Insoluble Asphaltene17.30.1Wt %IP-143M01/09/20Heptane Insoluble Asphaltene12.60.1Wt %IP-14301/09/20	Water	0.05	0.05	LV %	ASTM D-4007	01/09/20	JE
Pour Point 24 - 60 °C ASTM D-97 01/09/21 JE Pentane Insoluble Asphaltene 17.3 0.1 Wt % IP-143M 01/09/20 EH Heptane Insoluble Asphaltene 12.6 0.1 Wt % IP-143 01/09/20 EH	Carbon Content Hydrogen Content Oxygen Content	10.59 0.78		Wt % WI %			
Pentane Insoluble Asphaltene 17.3 0.1 Wt % IP-143M 01/09/20 EH Heptane Insoluble Asphaltene 12.6 0.1 Wt % IP-143 01/09/20 EH			60				JĘ
Heptene Insoluble Asphaltene 12.6 0.1 Wt % IP-143 01/09/20 EH				·U	ASTM D-97	01/09/21	JE
CORE LABORATORIES		and the second sec		1			
2810 - 12th STREET N.E. CALGARY, ALBERTA T2E 7P7		<u>I</u>	I	2	810 - 12th STREET N.E.		

	LABO	RATORY TES 11/13/01	T RESULTS			
OB NUMBER: 52137-01-6412	CUSTOMER	Conoco Canada	Ltd.	ATTN: Bob Hug	pins-Chan	
CLIENT I.D: Bitumen S DATE SAMPLEDAugust 23, CAMPLE INFO: Feed Stock 1 CAMPLE DESCRIPTION: Whole C	2001 Fank			LABORATORY I.D. DATE RECEIVED TIME RECEIVED REMARKS	: 01-08-2 :	
est description	FINAL RESULT	LIMITS COLUTION	UNITS OF MEASURE	TEST METHOD	DATE	T.C.
Fractional Distillation	% Yield (Mass)	% Yield (Volume)		ASTM D-2892	01/09/12	wc
IBP = 171 (Deg C @ 760 mmHg) IBP - 232 (Deg C @ 760 mmHg) 232 - 343 (Deg C @ 760 mmHg) 343 - 454 (Deg C @ 760 mmHg) 4540 - 524 (Deg C @ 760 mmHg) 524 Plus (Deg C @ 760 mmHg) Loss	1.67 11.18 21.58 9.70 55.80 0.07	1.96 12.44 22.41 9.86 53.25 0.08				
Vacuum Distillation			°C AET	ASTM D-1160	01/10/11	wc
I.B.P. 5% Off 10% Off 20% Off 30% Off 40% Off FBP	214.8 293.7 331.5 381.2 444.0 503.8 513.5 513.5					
Wt. % Recovery Wt. % Residue Wt. % Loss Wt. % Cold Trap (Overheads)	44.3 54.6 0.1 1.0					
r <u>.</u>						
		_		CORE LABORATORIES 810 - 12th STREET N.E.		
<u></u>	<u>_</u>	PAGE: 3		ALGARY, ALBERTA T2		

LABORATORY TEST RESULTS 11/13/01									
JOB NUMBER: 52137-01-5412	CUSTOMER	Conoco Canada	Ltd.	ATTN: Bob Hugg	rins-Chan				
CLIENT I.DBitumen DATE SAMPLEDAugust 23, SAMPLE INFOFeed Stock SAMPLE DESCRIPTION: Whole C	, 2001 Tank			LABORATORY I.D. DATE RECEIVED TIME RECEIVED REMARKS	: 01-08-2 :				
TEST DESCRIPTION	FINAL RESULT	LIMITS/ DELITION	UNITS OF MEASURE	TEST METHOD	DATE	TEC			
Metals by ICAP Nickel Vanadium Cobalt Motybdenum Sodium Iron Potassium Calcium Magnesium Aluminum Copper	77 196 < 0.1 9 6 7 1.3 17 0.7 15 0.5		mg/kg	ASTM D-5185	01/10/19	τw			
Arsenic Shell Hot Filtration	< 0.1 0.04		Wt %		01/10/05	*NCUT			
Sheil p-Value	3.50				01/10/05	*NCUT			
Viscosity, Kinematic @ 60 ° C Viscosity, Kinematic @ 100 ° C Viscosity, Kinematic @ 140 ° C	2399 193.1 46.86		ಚಿ ಚಿನ ಚಿ	ASTM D-445 ASTM D-445 ASTM D-445	01/10/07 01/10/07 01/10/07	JE JE JE			
a.									
*NCUT - analysis conducted by National Cer	nter for Upgrading Tech	nology		CORE LABORATORIES 2810 - 12th STREET N.E CALGARY, ALBERTA T	E.				

	LABO	RATORY TES 11/13/01	T RESULTS			· · · · · · · · · · · · · · · · · · ·
JOB NUMBER: 52137-01-5412	CUSTOMER	Conoco Canada	Ltel	ATTN: Bob Mug	gins-Chan	
CLIENT I.D Bitumen S DATE SAMPLED	2001 ank			LABORATORY I.D DATE RECEIVED. TIME RECEIVED REMARKS	: 01-08-2 :	
TEST DESCRIPTION	FINAL REBULT	LIMITS/"DIELITION	UNITS OF MEASURE	TESTMETHOD	DATE	TECH
Yield Yield API Gravity Specific Gravity	1.96 1.67 33.4 0.8582		LV % WT % @ 60°ፑ @ 60/60 ℉	ASTM D-2892 ASTM D-2892 ASTM D-5002	01/09/12 01/09/12 01/09/21	WC WC WC
Relative Density	0.8585		@ 15/15 °C	ASTM D-5002 ASTM D-5002	01/09/21 01/09/21	wc wc
Sulphur, Total by X-ray Fluorescence	1.200	0.05	Wt %	ASTM D-4294	01/10/03	тк
Mercaptan Sulphur	147	1	mg/kg	ASTM D-3227	01/09/21	JE
Total Nitrogen by Chemiluminescence	51	1	ppm Wt.	ASTM D-4629	01/10/12	wc
Acid Number	0.25		mg KOH/g	ASTM D-664	01/10/04	тк
Bromine Number	5.6		g / 100 g	ASTM D-1159	01/10/04	*HP
Aniline Point	50.3		°C	ASTM D-611	01/10/04	тк
Elemental C, H. Carbon Content Hydrogen Content	84.93 12.26		Wt % Wt %	ASTM D-5291	01/10/17	РМ
Hydrocarbon Type Aromatics Olefins Saturates	10.2 3.8 86.0		LV % LV % LV %	ASTM D-1319	01/10/04	JE
Smoke Point	19.5		mm	ASTM D-1322	01/10/10	JE
e						
I				ORE LABORATORIES		
		-		ALGARY, ALBERTA T		

LABORATORY TEST RESULTS 11/13/01										
JOB NUMBER: 52137-07-5412	CUSTOMER	Conoco Canada	Lrd.	ATTN: Bob Hug	dns-Chan					
CLIENT I.D: Bitumen S DATE SAMPLED:August 23, 2 SAMPLE INFO: Feed Stock T SAMPLE DESCRIPTION: IBP - 232	2001 ank			LABORATORY I.D. DATE RECEIVED TIME RECEIVED REMARKS	: 01-08-2 :	1-5412-1 9				
TEST DESCRIPTION	FINAL RESULT	LIMITS/CRUITION	UNITS OF MEASURE	TEST METHOD	CATE	TECH				
Cloud Point	<- 60	-60	°C	ASTM D-2500	01/10/06	тк				
Freeze Point	solid @ -75 C no crystals	-75	۳C	ASTM D-2386	01/10/10	JE				
Viscosity, Kinematic @ 40 °C Viscosity, Kinematic @ 80 °C	1.662 0.9773		cSt cSt	ASTM D-445 ASTM D-445	01/09/21 01/09/21	JE JE				
		١								
	1									
						ļ				
			r F							
·				ORE LABORATORIES 810 - 12th STREET N.E.						
		PAGE:6		ALGARY, ALBERTA T2	E 7P7					

OB NUMBER: 52137-01-5412	CUSTOMER	Conoco Canada I	Fa	ATTN: Bob Hugg	*****	
LIENT I.D	imple			LABORATORY I.D DATE RECEIVED		
ATE SAMPLEDAugust 23, 2 SAMPLE INFO	uu i			TIME RECEIVED		
SAMPLE INFO Feed Stock 17 SAMPLE DESCRIPTION: 232 °C - 3				REMARKS		
EST DESCRIPTION	FINAL RESULT	LIMITS/IDELITION	UNITS OF MEASURE	TEST METHOD	DATE	ta ca
Yield	12.44		LV %	ASTM D-2892	01/09/12	wc
Yield	11.18		WT %	ASTM D-2892	01/09/12	WC
API Gravity	24.7		@ 60 °F	ASTM D-5002	01/09/21	WC
Specific Gravity	0.9061		@ 60/60 °F	ASTM D-5002	01/09/21	WC
Relative Density	0.9064		@ 15/15 °C	ASTM D-5002	01/09/21	wc
Sulphur, Total by X-ray Fluorescence	1.946	500	ppm	ASTM D-4294	01/10/03	тк
Mercaptan Sulphur	69	1	mg/kg	ASTM D-3227	01/09/21	JE
Total Nitrogen by Chemiluminescence	172	1	ppm Wt.	ASTM D-4629	01/10/12	wc
Acid Number	1.59		mg KOH/g	ASTM D-664	01/10/04	JE
Bromine Number	3.0		g / 100 g	ASTM D-1159	01/10/08	⁺HP
Aniline Point	48.0		°C	ASTM D-611	01/10/04	тк
Elemental C, H.				ASTM D-5291	01/10/17	PM
Carbon Content	86.24		Wt %			
Hydrogen Content	13.53		Wt %			
				ASTM D-1319	01/10/04	JE
Hydrocarbon Type	30.7		LV %	AGT/0-1919		
Aromatics	7.9		LV%			
Olefins Saturates	61.4		LV %			
Jalurbies	·			107110 4000	044040	JE
Smoke Point	13.0	:	mm	ASTM D-1322	01/10/10	JE
Pour Point	<- 60	- 60	°C	ASTM D-97	01/10/04	тк
Cetane index	35.9			ASTM D-976	01/10/17	EM
	I			CORE LABORATORIE		
				2810 - 12th STREET N	.E.	

1

	LABO	RATORY TEST 11/13/01	RESULTS			
JOB NUMBER: 52137-01-5412	CUSTOMER:	Concco Canada I	td	ATTN: Bob Hugg	ins-Chan	
CLIENT I.DBitumen Sa DATE SAMPLEDAugust 23, 2 SAMPLE INFOFeed Stock T SAMPLE DESCRIPTION: 232 °C - 3	2001 ank			LABORATORY I.D., DATE RECEIVED TIME RECEIVED REMARKS	: 01-08-29 :	-5412-1)
TEST DESCRIPTION	RINAL RESULT	LIMITS/ DELUTION	UNITS OF MEASURE	TEST METHOD	CATE	TECH
Cloud Point	<- 60	-60	۳C	ASTM D-2500	01/10/04	тк
Freeze Point	solid @ -62 C no crystals	-75	°C	ASTM D-2386	01/10/17	JE
Viscosity, Kinematic @ 40 ° C Viscosity, Kinematic @ 80 ° C	5.638 2.307		cSt cSt	ASTM D-445 ASTM D-445	01/09/21 01/09/21	JE JE
l						
¢					:	
	l]	<u> </u>	CORE LABORATORIE 2810 - 12th STREET N CALGARY, ALBERTA	.E.	I
		PAGE: 8		CALGARY, ALDERTA	126171	

PAGE: 8

CLIENT I.D Bitumen Sa DATE SAMPLED: August 23, 2 SAMPLE INFO: Feed Stock Ta SAMPLE DESCRIPTION: 343 °C - 4	001 ank			LABORATORY I.D. DATE RECEIVED TIME RECEIVED REMARKS	: 0 1-08-2 9 :	
TEST DESCRIPTION	FINAL RESULT	LIMITS/"DELUTION	UNITS OF MEASURE	TEST METHOD	DATE	Ĵ
Yield	22.41		LV %	ASTM D-2892	01/09/12	W
Yield	21.58		WT %	ASTM D-2892	01/09/12	v
API Gravity	14.2		@ 60 °F	ASTM D-5002	01/09/21	V
Specific Gravity	0.9710		@ 60/60 °F	ASTM D-5002	01/09/21	v
Relative Density	0.9713		@ 15/15 °C	ASTM D-5002	01/09/21	v
Sulphur, Total by X-ray Fluorescence	3.507	500	ppm	ASTM D-4294	01/10/03	٦
Total Nitrogen by Chemiluminescence	1510	1	ppm Wt	ASTM D-4629	01/10/12	v
Nitrogen, Basic	458		ppm Wt.	UOP-269	01/10/10	•
Acid Number	3.9		mg KOH/g	ASTM D-664	01/09/21	•
Bromine Number	3.5		g / 100 g	ASTM D-1159	01/10/04	ł
Elemental C, H.				ASTM D-5291	01/10/17	F
Carbon Content	84.83		Wt %			
Hydrogen Content	11.04		Wt %			
Pour Point	-18	- 60	°C	ASTM D-97	01/09/28	•
Cetane Index	27.6			ASTM D-976	01/10/17	E
Cloud Point	solid @ - 21°C no crystals		°C	ASTM D-2500	01/10/04	٦
Viscosity, Kinematic @ 40 ° C	143.50		cSt	ASTM D-445	01/09/21	
Viscosity, Kinematic @ 80 ° C	17.57		cSt	ASTM D-445	01/09/21	
Viscosity, Kinematic @ 100 ℃C	8.995		cSt	ASTM D-445	01/09/21	•
				CORE LABORATORIE	1	
				2810 - 12th STREET N		

IENT I.DBitumen Sa ATE SAMPLED:August 23, 2 MPLE INFO: Feed Stock Ta MPLE DESCRIPTION: 343 °C - 4	2001 ank			LABORATORY I.D. DATE RECEIVED TIME RECEIVED REMARKS	: 01-08-29 :	
BT DEBCRIPTION	FINAL REBUILT	LIMITS/"DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECH
Paraffins	5.3	0	LV %	ASTM D-3239	01/10/09	LWS
Naphthenes	38.8	ů O	LV %	ASTM D-2549		
Aromatics	55.9	õ	LV %	ASTM D-2786		
NAPHTHENIC DISTRIBUTION		v				
	9.3	0	LV %			
2 Ring	14.7	0	LV %			
3 Ring	8.2	0	LV %			
4 Ring	5.2	0	LV %			
5 Ring	1.4	0	LV %			
6 Ring	< 0.1	0	LV %			
AROMATIC DISTRIBUTION						
Monoaromatics	24.3	0	LV %			
-Alkylbenzenes	8.0	0	LV %			
Naphthenebenzenes	7.2	0	LV %			
Dinaphthenebenzenes	9.1	0	LV %			
Diaromatics	14.8	0	LV %			
Naphthalenes	4.5	0	LV %			
Acenaphthenes/Dibenzofurans	4.6	0	LV %			
Fluorenes	57	0	LV %			
Triaromatics	4.5	0	LV %		1	
Phenenanthrenes	3.3	0	LV %			
Naphthenephenanthrenes	1.2	0	LV %		1	
Tetraaromatics	2.1	0	LV %			
Pyrenes	1.7	0	LV %			
Chyrsenes	0.4	0	LV %			
Pentaaromatics	0.2	0	LV %			
-Perylenes	0.2	0	LV %			
Dibenzanthracenes	< 0.1	0	LV %] [
Thiopheno Aromatics	9.8	0	LV %			
Benzothiophenes	5.9	0	LV %			
Dibenzothiophenes	3.5	0	LV %			
Naphthabenzothiophenes	0.4	0	LV %			
Unidentified Aromatics	0.2	0	LV %			
			<u> </u>	CORE LABORATORIE	<u> </u> s	· <u>-</u> .
				2810 - 12th STREET N CALGARY, ALBERTA		

	LABO	RATORY TES 11/13/01	T RESULTS			
JOB NUMBER: 52137-01-5412	CUSTOMER	Conocu Canada	L Ka	ATTN: Bob Hugo	dns-Chan	
CLIENT I.DBitumen S DATE SAMPLEDAugust 23, 2 SAMPLE INFO: Feed Stock T SAMPLE DESCRIPTION: 454 °C - 5	2001 ank			LABORATORY I.D. DATE RECEIVED TIME RECEIVED REMARKS	: 01-08-2 :	
TEST DESCRIPTION	FINAL RESULT	LIMITS/DELUTION	UNITS OF MEASURE	TEST METHOD	DATE	тесн
Yield Yield	9.86 9.70		LV % WT %	ASTM D-2892 ASTM D-2892	01/09/12 01/09/12	wc wc
API Gravity Specific Gravity Relative Density	11.3 0.9913 0.9915		@ 60 °F @ 60/60 °F @ 15/15 °C	ASTM D-5002 ASTM D-5002 ASTM D-5002	01/09/21 01/09/21 01/09/21	WC WC WC
Sulphur, Total by X-ray Fluorescence	4.045	500	ppm	ASTM D-4294	01/10/03	тк
Total Nitrogen by Chemiluminescence	2620	1	ppm Wt.	ASTM D-4629	01/10/12	WC
Nitrogen, Basic	723		ppm Wt.	UOP-269	01/10/10	JE
Acid Number	4.9		mg KOH/g	ASTM D-664	01/10/03	тк
Elementat C, H. Carbon Content Hydrogen Content	84.33 11.87		Wt % Wt %	ASTM D-5291	01/10/17	РМ
Carbon Residue, Conradson	0.16		Wt. %	ASTM D-189	01/10/04	JE
Pour Point	15	- 60	°C	ASTM D-97	01/10/09	тк
Viscosity, Kinematic @ 40 ° C Viscosity, Kinematic @ 80 ° C Viscosity, Kinematic @ 100 ° C	2192 93.25 31.71		cSt cSt cSt	ASTM D-445 ASTM D-445 ASTM D-445	01/09/21 01/09/21 01/09/21	JE JE JE
र्ट -						
				CORE LABORATORIES 2810 - 12th STREET N. CALGARY, ALBERTA T	E,	

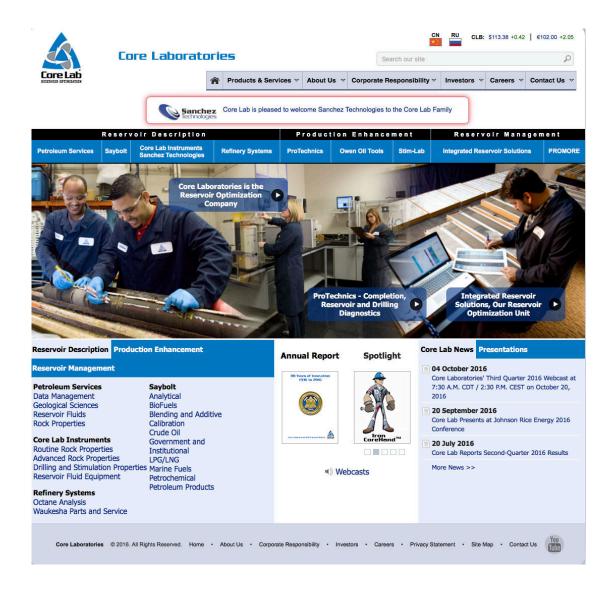
Page: 11

	LABO	RATORY TES	T RESULTS		i	
JOB NUMBER: 52137-01-5412	CUSTOMER	11/13/01 Conoco Canada	Ltd.	ATTN: Bob Hug	uns-Chan	
CLIENT I.DBitumen S DATE SAMPLEDAugust 23, 5 SAMPLE INFOFeed Stock T SAMPLE DESCRIPTION: 454 °C - 5	2001 ank			LABORATORY I.D. DATE RECEIVED TIME RECEIVED REMARKS	: 52137-01 : 01-08-21 :	
TEST DESCRIPTION	FINAL RESULT	LIMITS/ DELITION	UNITS OF MEASURE	TEST METHOD	DATE	тесн
Paraffins	3.6	0	LV %	ASTM D-3239	01/10/09	LWS
Naphthenes	24.8	0	LV %	ASTM D-2549		
Aromatics	71.6	0	LV %	ASTM D-2786		
NAPHTHENIC DISTRIBUTION						
1 Ring	6.2	0	LV %		ĺ	
2 Ring	9.9	0	LV %			
—3 Ring	6.0	0	LV %			
	2.1	0	LV %			
—5 Ring	0.6	0	LV %		Í	
6 Ring AROMATIC DISTRIBUTION -	< 0.1	0	LV %			
Monoaromatics	34.8	0	LV %			
Alkylbenzenes	12.4	0	LV %			
Naphthenebenzenes	9.8	0	LV %		1	
Dinaphthenebenzenes	12.6	0				
Diaromatics	19.0	0	LV %			
Naphthalenes	6.4	o	LV %			
Acenaphthenes/Dibenzofurans	5.1	0	LV %			
Fluorenes	7.5	0	LV %			
Triaromatics	3.3	0	LV %			
Phenenanthrenes	2.6	0	LV %			
Naphthenephenanthrenes	0.7	0	LV %			
Tetraaromatics	2.3	0	LV %		-	
Pyrenes	1.9	0	LV %			
Chyrsenes	0.4	0	LV %	l		
Pentaaromatics	0.2	0	LV %			
-Perylenes	0.2	0	LV %			
Dibenzanthracenes	< 0.1	0	LV %			
Thiopheno Aromatics	11.1	0	LV %			
Benzothiophenes	8.7	0	LV %			
-Dibenzothiophenes	2.2	0	LV %			Į
Naphthabenzothiophenes	0.2	0	LV %			
Unidentified Aromatics	0.9	0	LV %			
				ORE LABORATORIES		
				810 - 12th STREET N.E. ALGARY, ALBERTA T2E	707	
		Page: 12				

		11/13/01		ATTN: Bob Hugg		
OB NUMBER: 52137-01-5412	GUSTOMER	Conoco Canada	LIC	ALINEBOOTUGD	ins-unan	
LIENT I.D Bitumen Sa	mple			LABORATORY I.D	: 52137-01	-5412-1
ATE SAMPLED				DATE RECEIVED	: 01-08-29	Ð
AMPLE INFO Feed Stock Ta	ink			TIME RECEIVED		
SAMPLE DESCRIPTION: 343 °C Plu				REMARKS		
EST DESCRIPTION	FINAL RESULT	LIMITS/ DELUTION	UNITS OF MEASURE	TESTMETHOD	CATE	тесн
Yield	85.5		٤٧ %	ASTM D-2892	01/09/12	wc
Yield	87.1		WT %	ASTM D-2892	01/09/12	wc
API Gravity	6.2		@ 60 °F	ASTM D-5002	01/09/21	wc
Specific Gravity	1.0279		@ 60/60 °F	ASTM D-5002	01/09/21	wc
Relative Density	1.0281		@ 15/15 °C	ASTM D-5002	01/09/21	wc
Sulphur, Total by X-ray Fluorescence	5.718	500	ppm	ASTM D-4294	01/10/03	тк
Total Nitrogen by Chemiluminescence	2960	1	ppm Wt.	ASTM D-4629	01/10/12	wc
Acid Number	2.70		mg KOH/g	ASTM D-664	01/10/10	JE
Elemental C, H.				ASTM D-5291	01/10/17	PM
Carbon Content	83.29		Wt %			
Hydrogen Content	10.20		Wt %			
Carbon Residue, Conradson	16.05		WL %	ASTM D-189	01/09/24	JE
Pour Point	42	- 60	°C	ASTM D-97	01/10/07	тк
Viscosity, Kinematic @ 60 ° C	30 230		cSt	ASTM D-445	01/09/21	JE
Viscosity, Kinematic @ 100 ° C	1 436		cSt	ASTM D-445	01/09/24	JE
Viscosity, Kinematic @ 140 ° C			cSt	ASTM D-445		
Pentane Insoluble Asphaitene	20.5	0.1	Wt %	IP-143M	01/09/20	EH
leptane Insoluble Asphaltene	14.1	0.1	Wt %	IP-143	01/09/20	EH
Ash Content	0.062		Wt. %	ASTM D-482	01/09/24	JE
-						
		<u> </u>	<u> </u>	CORE LABORATORIES	;	
				2810 - 12th STREET N.I	€.	

Page: 13

	LABO	RATORY TES 11/13/01	T RESULTS	<u></u>		
JOB NUMBER: 52137-01-5412	CUSTOMER	Conoco Canada	Ltd.	ATTN: Bob Hugg	iins-Ghan	
CLIENT I.D Bitumen Sa DATE SAMPLED August 23, 2 SAMPLE INFO Feed Stock Ta SAMPLE DESCRIPTION: 343 °C Plu	2001 ank			LABORATORY I.D. DATE RECEIVED TIME RECEIVED REMARKS	: 01-08-29 :	
TEST DESCRIPTION	FINAL RESULT	LIMITS/ DBLUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECH
Metals by ICAP Nicket Vanadium Cobalt Molybdenum Sodium Iron Potassium Calcium Magnesium Aluminum Copper Arsenic	89 227 < 0.1 10 41 0.3 8 1 19 0.8 < 0.1		mg/kg	ASTM D-5185	01/10/19	TW
				CORE LABORATORIES 2810 - 12th STREET N.I CALGARY, ALBERTA T	E.	


LIENT I.DBitumen Sa ATE SAMPLED:August 23, 20 AMPLE INFO: Feed Stock Ta AMPLE DESCRIPTION: 524 °C Plu	001 Ink			LABORATORY I.D DATE RECEIVED TIME RECEIVED REMARKS	: 01-08-29 :	5412-1
STORSCRIPTION	FINAL RESULT	LIMITS/CRUTION	UNITS OF MEASURE	TESTMETHOD	DATE	TECH
//	53.25		LV %	ASTM D-2892	01/09/12	wc
	55.80		WT%	ASTM D-2892	01/09/12	WC
Yield API Gravity	2.4		@ 60°F	ASTM D-5002	01/09/21	WC
	1.0570		@ 60/60 °F	ASTM D-5002	01/09/21	wc
Specific Gravity Relative Density	1.0572		@ 15/15 °C	ASTM D-5002	01/09/21	wc
ulphur, Total by X-ray Fluorescence	6.431	500	ppm	ASTM D-4294	01/10/03	тк
otal Nitrogen by Chemiluminescence	3770	1	ppm Wt.	ASTM D-4629	01/10/12	WC
cid Number	2.16		mg KOH/g	ASTM D-664	01/10/10	JE
jemental C, H. O				ASTM D-5291	01/10/17	РM
Carbon Content	82.02		Wt%			
Hydrogen Content	9.36		Wt %		1 1	
Oxygen Content	1.34		Wt %			
Carbon Residue, Conradson	24.74		Wt. %	ASTM D-189	01/09/21	JE
Pour Point	90	- 60	°C	ASTM D-97	01/10/09	тк
Viscosity, Kinematic @ 100 °C	99 860		cSt	ASTM D-445	01/09/24	JE
Viscosity, Kinematic @ 140 ° C	4 071		cSt	ASTM D-445	01/10/07	тк
Viscosity @ 200 °C		1	Poise	ASTM D-2171		
Viscosity @ 250 °C			Poise	ASTM D-2171		
Pentane Insoluble Asphaltene	32.3	0.1	Wt %	IP-143M	01/09/20	EH
leptane Insoluble Asphaltene	24.0	0.1	Wt %	IP-143	01/09/20	EH
Ash Content	0.104		Wt. %	ASTM D-482	01/09/24	JE
Penetration @ 0 ° C						
Penetration @ 25 ° C						
			l l			

)

CLIENT I.DBit DATE SAMPLED	ust 23, 2001 Stock Tank 24 °C Plus		LABORATORY I.D. DATE RECEIVED TIME RECEIVED REMARKS	: 01-08-29 :	
Metals by ICAP Nickel Vanadium Cobalt Molybdenum Sodium Iron Potassium Calcium Magnesium Aluminum Copper Arsenic	123 311 < 0.1 14 17 49 < 0.1 11 2 25 1 < 0.1	mg/kg	ASTM D-5185	01/10/19	TW
ж.			CORE LABORATORIES 2810 - 12th STREET N.E		

GENOIL TEST RESULTS - PRODUCT ANALYSIS

LABORATORY TEST RESULTS BY CORE LABORATORIES

						1			
			1			1			1
									1
									1
	an 🐺 -								
	E.e.e.	-1	VCUT						1
		Ň	ational Cent	re for Upgradir	n Tech	nology			1-
	and the second	14.4) e'	anonal och	te tor opyraum	19-1 CCL	moiogy			1
	and the second s		allada/Alberta resea						
			·			····		1	
		1							-
	ц	NC	UT ANALYTI	CAL LABORATO	DRY				
				SIS REPORT					
								I	
Submitter	Eric MacDonald								
	Core Laboratories Canada Ltd								1
	2810- 12th Street NE								
	Calgary, Alberta								
	T2E 7P7								
								1	1
Lab ID	Customer ID	P-Value	FR	1/X		SHFT			
<u> </u>			(Flocculation Ratios)	(Inverse of dilution Ratio)		(w1%)			
		<u> </u>		\sim	\sim				
	Whole Crude 52137-01-5412-1	3.50	0.2056	0.150		0.04			
This Athab	asca Bitumen feed sample.		0.1244	0.250					
			0.0431	0.350					
· · · · · · · · · · · · · · · · · · ·					\sim			1	
	Whole Crude 52137-01-5412-12	1.20	0.4400	0.200		0.42			
This is the	liquid product from the catalytic ru	ก	0.4218						
			0.4036	0.600					
10006854	52137-01-5412-12 524C PLUS	1.41	0.5780	0.251	···	0.012	· · · · · · · · · · · · · · · · · · ·		
	524 C+ fraction of the liquid produ	ict above.	0.5060	0.439			·		<u>†</u>
		1	0.4350	0.754					+
		1						1	†
		1						-	+
		1						1	1
····	1	1							i
		<u> </u> ,							
			· · · · · · · · · · · · · · · · · · ·				• • • • • •		
·····									

Test Results PRODUCT SAMPLE Calalyst Run. composite Sample. LABORATORY TEST RESULTS 11/13/01 CUSTOMER: Conoco Canada Ltd. ATTN: Bob Huggins-Chan JOB NUMBER: 52137-01-5412 CLIENT I.D..... Crude Sample LABORATORY I.D: 52137-01-5412-12 DATE RECEIVED: 01-09-19 DATE SAMPLED: TIME RECEIVED: SAMPLE INFO 20010828 REMARKS SAMPLE DESCRIPTION ...: Whole Crude FINAL RESULT LIMITS/ DEUTION DATE TECH UNITS OF MEASURE TEST METHOD TEST DESCRIPTION 01/10/04 WC ASTM D-5002 904.7 0.1 kg/m3 Density @ 15°C 01/10/04 WC ASTM D-5002 905.5 Relative Density @ 15/15°C ASTM D-5002 01/10/04 WC 905.2 Specific Gravity @ 60°F ASTM D-5002 01/10/04 WC 24.8 API @ 15.6°C ASTM D-4294 01/10/04 TK 2360 500 ppm Sulphur, Total by X-ray Fluorescence 1432 ASTM D-4629 01/10/12 WC ppm Wt. 1 Total Nitrogen by Chemiluminescence ASTM D-664 01/10/16 JE 0.11 mg KOH/g Acid Number 01/10/16 **ASTM D-482** JE 0.001 WL. % Ash Content 01/10/16 2.59 WI. % **ASTM D-189** JE Carbon Residue, Conradson ASTM D-5291 01/10/17 PM Elemental C, H. O Wt % 86.68 Carbon Content 11.88 Wt % Hydrogen Content WI % 1.07 Oxygen Content ASTM D-3230 01/10/15 JE Salt Content 3.2 b/Kbbl WI% IP-143M 01/10/02 EH 1.6 0.1 Pentane Insoluble Asphaltene WI % IP-143 01/10/02 EH Heptane Insoluble Asphaltene 12 0.1 CORE LABORATORIES 2810 • 12h STREET N.E. CALGARY, ALBERTA T2E 7P7

PAGE: 1

	LABO	RATORY TES 11/13/01	T RESULTS			
JOB NUMBER: 52137-01-5412	CUSTOMER:	Conoco Canada I	tđ	ATTN: Bob Hug	jins-Chan	
CLIENT I.D: Crude San DATE SAMPLED: SAMPLE INFO				LABORATORY I.D. DATE RECEIVED TIME RECEIVED REMARKS	: 01-09-19 :	
TEST DESCRIPTION	FINAL RESULT	LIMITS/ DELUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECH
Fractional Distillation	% Yield (Mass)	% Yield (Volume)		ASTM D-2892	01/09/29	wc
IBP = 48 (Deg C @ 760 mmHg) IBP - 177 (Deg C @ 760 mmHg) 177 - 232 (Deg C @ 760 mmHg) 232 - 343 (Deg C @ 760 mmHg) 343 - 524 (Deg C @ 760 mmHg) 524 Plus (Deg C @ 760 mmHg) Loss	7.44 10.59 32.23 38.00 11.68 0.06	8.67 11.49 33.02 36.71 10.08 0.03				
Atmospheric / Vacuum Distillation			°C AET	ASTM D-1160	01/10/17	wc
I.B.P. 5% Off 10% Off 20% Off 30% Off 40% Off 50% Off 60% Off 70% Off 80% Off 94% Off FBP Wt. % Recovery Wt. % Residue Wt. %t Loss	60.2 150.6 175.8 203.5 290.0 315.1 333.8 363.5 395.5 443.8 518.1 567.8 567.8 567.8 9.3 0.9	(atmospheric) (atmospheric) (atmospheric) (atmospheric) (vacuum) (vacuum) (vacuum) (vacuum) (vacuum) (vacuum) (vacuum) (vacuum)				
	_ I	<u> </u>	L	CORE LABORATORIE 2810 - 12th STREET N		l
				CALGARY, ALBERTA	T2E 7P7	

	LABO	RATORY TES 11/13/01	T RESULTS			
JOB NUMBER: 52137-01-5412	CUSTOMER:	Conoco Canada	Ltd.	ATTN: Bob Hugg	lins-Chan	
CLIENT I.D: Crude Sar DATE SAMPLED: SAMPLE INFO: 20010828 SAMPLE DESCRIPTION: Whole Ci	-			LABORATORY I.D. DATE RECEIVED TIME RECEIVED REMARKS	: 01-09-1 :	—
TEST DESCRIPTION	FINAL RESULT	LIMITS/ DELITION	UNITS OF MEASURE	TEST METHOD	DATE	TECH
Metals by ICAP Nickel Vanadium Cobalt Molybdenum Sodium Iron Potassium Calcium Magnesium Aluminum Copper	8 18 < 0.1 < 0.05 5 1 1 1 0.1 3.0 0.5		mg/kg	ASTM D-5185	01/10/19	TW
Arsenic Shell Hot Filtration	< 0.1 0.42		Wt %		01/09/19	*NCUT
Shell p-Value	1.20				01/09/19	*NCUT
Viscosity, Kinematic @ 40 ° C Viscosity, Kinematic @ 80 ° C	10.04 3.71		cSt cSt	ASTM D-445 ASTM D-445	01/10/03 01/10/03	ТК ТК
*NCUT - analysis conducted by National Cent	er for Upgrading Tec	hnology		CORE LABORATORIES 2810 - 12th STREET N.E CALGARY, ALBERTA T	E.	

	LABO	RATORY TES 11/13/01	T RESULTS		·	
JOB NUMBER: 52137-01-5412	CUSTOMER	Conoco Canada	Ltd,	ATTN: Bob Hugg	ins-Chan	
CLIENT I.D: Crude Sar DATE SAMPLED SAMPLE INFO: 20010828 SAMPLE DESCRIPTION: 177 °C - 2				LABORATORY I.D. DATE RECEIVED TIME RECEIVED REMARKS	: 01 -09- 1 :	
TEST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	ТЕСН
Yield Yield API Gravity Specific Gravity	11.49 10.59 38.2 0.8340		LV % WT % @ 60 "F @ 60/60 "F	ASTM D-2892 ASTM D-2892 ASTM D-5002 ASTM D-5002	01/09/29 01/09/29 01/10/04 01/10/04	WC WC WC WC
Relative Density	0.8344		@ 15/15 °C	ASTM D-5002	01/10/04	wc
Sulphur, Total by UV Fluorescence	19	1	mg/kg	ASTM D-5453	01/10/04	тк
Total Nitrogen by Chemiluminescence	66	1	ppm Wt.	ASTM D-4629	01/10/05	wc
Bromine Number	0.5		g / 100 g	ASTM D-1159	01/10/08	*HP
Elemental C, H. Carbon Content Hydrogen Content	88.04 12.91		Wt % Wt %	ASTM D-5291	01/10/17	РМ
Hydrocarbon Type Aromatics Olefins Saturates	26.8 0.8 72.4		LV % LV % LV %	ASTM D-1319	01/10/17	JE
Aniline Point	46.0		۳C	ASTM D-611	01/10/04	тк
Smoke Point	18.0		mm	ASTM D-1322	01/10/15	JE
Freeze Point	-69	-76	°C	ASTM D-2386	01/10/16	JE
			L	CORE LABORATORIES		
				CALGARY, ALBERTA T		

.

	LABO	RATORY TES 11/13/01	T RESULTS			<u></u>
IOB NUMBER: 52137-01-5412	CUSTOMER:	Conoco Canada	Ltd.	ATTN: Bob Hug	gins-Chan	
CLIENT I.D: Crude S DATE SAMPLED: SAMPLE INFO: 20010828 SAMPLE DESCRIPTION: 524 °C		·		LABORATORY I.D DATE RECEIVED TIME RECEIVED REMARKS	: 01-09-1 :	
EST DESCRIPTION	FINAL RESULT	LIMITS/ DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	тесн
Metals by ICAP Nickel Vanadium Cobalt Molybdenum Sodium Iron Potassium Calcium Magnesium Aluminum	67 147 < 0.1 < 0.05 12 4 2.3 12 2 10		mg/kg	ASTM D-5185	01/10/19	TW
Copper Arsenic Shell Hot Filtration	1 < 0.1 0.012		Wt %		01/10/31	⁺NCUT
Shell p-Value	1.41				01/10/31	*NCUT
· · · · · · · · · · · · · · · · · · ·	1	i	<u> </u>	CORE LABORATORIE 2810 - 12th STREET N CALGARY, ALBERTA	E,	<u> </u>

Page: 11

-